欢迎报考郑州大学研究生!

img

杨志坚

研究方向:非线性发展方程、无穷维动力系统

个人简介:

1975.9—1978.7河南师范大学数学系学习, 1978.7本科毕业;

1997.9—2000.7郑州大学数学系博士研究生, 2000.7毕业,获理学博士学位;

2004.9—2005.7大连外国语学院教育部出国留学人员培训部学习日语;

2005.10—2006.10日本九州大学数理学研究院访问教授, 2006.9获九州大学数理学博士学位;

2000.9—至今 郑州大学数学系教授,博士生导师,河南省跨世纪学术、技术带头人,河南省数学会常务理事。现任美国 《Mathematical Reviews》评论员,《Journal of Partial Differential Equations》编委,河南省高校数学教学指导委员会副主任。

科研课题:

1.国家自然科学基金资助项目《非线性高阶发展方程中的若干问题》2013.1—2016.12.

2 .国家自然科学基金资助项目《非线性高阶发展方程的理论及其应用》2010.1—2012.12.

3.河南省基础与前沿技术研究计划项目:《非线性高阶发展方程的长时间行为研究》2009.1—2011.12.

4.国家留学基金委员会“中国政府派遣研究员项目”《非线性高阶发展方程的渐近行为》2005.10--2006.10。

主要论文:

2015

1、Zhijian Yang, Zhiming Liu,Exponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Applied Mathematics Letters 46 (2015) 127–132.

2、Zhijian Yang, Zhiming Liu,  Panpan Niu,  Exponential attractor for the wave equation with structural damping and supercritical exponent, Communications in Contemporary Mathematics, (2015) 1550055 (13 pages).

3、Zhijian Yang, Na Feng, To Fu Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis 115 (2015) 103–116.

4、 L.H.Fatori, M.A.Jorge Silva, T.F.Ma, Zhijian Yang,  Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations 259 (2015) 4831–4862.

2014

1、Zhijian Yang, Pengyan Ding, Zhiming Liu,Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity,Applied Mathematics Letters 33 (2014) 12–17

2、 Ke Li and Zhijian Yang, Asymptotic behavior for the singularly perturbed damped Boussinesq equation, Mathematical Methods in the Applied Sciences, 2014

2013.

1.杨志坚,On an extensible beam equation with nonlinear damping and source terms,  J. Differential Equations,254 (2013) 3903–3927.

2、杨志坚, Longtime dynamics of the damped Boussinesq equation, J. Math. Anal. Appl. 399 (2013) 180–190.

3、 李珂,杨志坚, Exponential attractors for the strongly damped wave equation,Applied Mathematics and Computation 220 (2013) 155–165.

4、杨志坚,李珂, Longtime dynamics for an elastic waveguide model,  Dynamical Systems  (2013)  797-806.

2012.

1、 杨志坚,  Finite-dimensional attractors for the Kirchhoff models with critical exponents,J. Mathematical Physics,53(2012) 032702.

2011.

1、杨志坚, A global attractor for the elastic waveguide model in , Nonlinear Analysis 74 (2011) 6640–6661.

2、杨志坚,李晓, Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation, J. Math. Anal. Appl. 375 (2011) 579–593.

2010.

1、杨志坚,王云青,Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations249 (2010) 3258–3278.

2、杨志坚, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models, J. Mathematical Physics,51, 12010,032701 -1-17.

3、杨志坚,  Finite-dimensional attractors for the Kirchhoff models, J. Mathematical Physics, 51 (2010) 092703 -1-25.

4、宋长明,杨志坚,  Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Math. Meth. Appl. Sci. 2010, 33 563–575

2009.

1、杨志坚,靳宝霞, Global attractor for a class of Kirchhoff models, J. Mathematical Physics, 2009, 50 (3) 032701-1-29.

2、杨志坚, Global attractor for a nonlinear wave equation arising in elastic waveguide model,  Nonlinear Analysis 70 (2009) 2132–2142.

3、杨志坚,Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Mathematical Methods in the Applied Sciences, 32: 1082-1104 (2009)

4、宋长明,杨志坚,Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, 6: 4, 367-383, 2009

2008

1、杨志坚,郭柏灵, Cauchy problem for the multi-dimensional Boussinesq type equation, Journal of Mathematical Analysis and Applications,2008, 340: 64-80.

2007.

1、杨志坚,  Longtime behavior of the Kirchhoff type equation with strong damping on,J. Differential Equations, 2007, 242: 269-286.

2、M. Nakao,杨志坚, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.

2006.

1、杨志坚, Cauchy problem for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications,2006, 320: 859-881.

2、杨志坚, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, Journal of Mathematical Analysis and Applications,2006, 313: 197-217.

2005.

1、 杨志坚,  Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.

2004.

1、杨志坚,  Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, Journal of Mathematical Analysis and Applications,2004, 300: 218-243.

2003.

1、杨志坚, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J.Differential Equations, 2003, 187: 520-540.

2、杨志坚, 王霞,  Blowup of solutions for improved Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2003, 278: 335-353.

3、杨志坚,王霞, Blowup of solutions for the “bad” Boussinesq-type equation, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 282-298.

4、杨志坚, 陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 606-620.

5、杨志坚,  Initial boundary value problem for a class of nonlinear strongly damped wave equation,Mathematical Methods in the Applied Sciences,2003, 26 (12): 1047-1066.

2002.

1、杨志坚,  On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation, Nonlinear Anal.2002, 51(7): 1251-1263.

2、杨志坚,  Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms,Mathematical Methods in the Applied Sciences,2002, 25: 795-814.

3、杨志坚,  Blowup of solutions for a class of evolution equations with nonlinear damping and source terms,Mathematical Methods in the Applied Sciences,2002, 25: 825-833.

2000.

1、陈国旺,杨志坚, Existence and non-existence of global solutions for a class of non- linear wave equations,Mathematical Methods in the Applied Sciences,2000, 23: 615-631.

2、杨志坚,  Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation,Mathematical Methods in the Applied Sciences,1998, 21: 1467-1477.

3、杨志坚,宋长明,  Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.

4、陈国旺,邢家省,杨志坚, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis, 1996, 26: 1255-1270.

获奖情况:

1.《流体力学与粘弹性力学中的非线性模型方程》 获得2000年河南省科技进步二等奖.

2.《非线性高阶发展方程--物理与力学中的若干模型方程》 获得1997年化学工业部科技进步三等奖.

3.《Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term》2004年获河南省教育厅优秀科技论文一等奖。

4.《Blowup of solutions for the “bad” Boussinesq-type equation》2004年获河南省教育厅优秀科技论文一等奖。

5.《具强耗散的Kirchhoff型方程的整体吸引子》2011年获得河南省首届自然科学学术奖一等奖。

6.《Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping》2011年 获得河南省首届自然科学学术奖一等奖。

7.《数学与应用数学特色专业建设的研究与实践》获得2013年河南省教学成果二等奖。

8.《Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation》2013年获得河南省第二届自然科学学术奖一等奖。