欢迎报考郑州大学研究生!

img

陈卫华



陈卫华,郑州大学化学学院教授、博士生导师。入选“国家重大人才工程”青年项目、“中原千人计划”-中原青年拔尖人才等。 聚焦在面向经济、安全、绿色的钠离子电池体系的电极材料、电解质/隔膜设计合成及界面调控相关研究工作。以第一或通讯作者在Chem.、Angew. Chem. Int. Ed.、Adv. Mater.、Nat. Commun.、Nano Research、Sci. China-Mater.、J. Energy Chem.等期刊发表学术论文100余篇,论文被SCI引用6000余次,H-index44;相关研究成果已授权中国发明专利18件;参与撰写钠离子电池领域英文书籍的部分章节。兼任中国化学会电化学委员会委员、中国化工学会第二届储能工程专业委员会委员及Nano Research、Energy & Environmental Materials、Chemical Synthesis、冶金分析以及Rare Metals等多个期刊青年编委,入选2022年全球前2%顶尖科学家。


联系方式:


Email:chenweih@zzu.edu.cn


学习经历:

2004.09--2009.12   武汉大学 化学与分子科学学院   物理化学  硕博

2000.09--2004.06   郑州大学 化学系(基地班)        化学    本科


工作经历:

2019.04--至 今    郑州大学 化学学院             教授

2013.03--2019.04   郑州大学 化学与分子工程学院   副教授

2010.01--2013.03   郑州大学 化学与分子工程学院   讲师


研究方向:

界面电化学、钠离子电池材料及电解质/隔膜的智能设计合成、储能及动力电池系统

主持项目:

1. 国家自然科学基金-面上项目:金属配位调控钠离子电池碳基负极SEI成膜及其作用机制研究。

2. 河南省省级科研研发计划联合基金(优势学科培育类):高压钠离子电池电解液与正极材料的协同设计及其界面机制研究。

3. 郑州大学青年人才创新团队支持计划(杰青团队):新型电池界面化学。

4. 国家自然科学基金-面上项目:过渡金属氧族化合物异质结/开口掺杂石墨烯多级结构组装高性能钠离子电池及其电化学过程中结构演变。

5. 国家自然科学基金-河南联合基金:金属硫族化合物储钠过程中的界面演变及其精准调控。

6. 国家自然科学基金-应急管理项目:动力电池用高容量硅酸亚铁锂基复合材料的设计合成与电化学性能研究。

7. 国家自然科学基金-青年基金:新型核壳结构调控锂离子电池活性材料电化学性能研究。

8. 河南省高层次人才特殊支持计划:钠离子电池关键材料构筑。

9. 河南省高校科技创新人才支持计划:新型钠离子电池电极材料的设计合成与性能调控。


代表论文:

1. K. Song, J. Liu, H. Dai, Y. Zhao,W. Chen*et al. Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage.Chem., 2021, 7,1-11.

2. Y. Wan, K. Song,W. Chen*, C. Qin, X. Zhang, J. Zhang, H. Dai, Z. Hu, P. Yan, C. Liu, S. Sun*, S. Chou*, C. Shen et al.Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage.Angew. Chem. Int. Ed., 2021, 60, 11481-11486.

3. W. Chen*, X. Zhang, L. Mi, C. Liu,et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries.Adv. Mater., 2019, 31, 1806664.

4. M. Chen, W. Hua, J. Xiao, W. Chen*, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density.Nat. Commun., 2019, 10, 1480.

5. J. Zhang, J. Gai, K. Song,W. Chen*, Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.Cell Rep. Phys. Sci.,2022, 3, 100868.

6. J. Zheng*, W. Li,J.Zhang, W. Chen*, Y. Sun., Effects of Flexible group length of phosphonate monomers on the performance of gel polymer electrolytes for sodium-ion batteries with ultralong cycling life.ACS Sustainable Chem. Eng., 2022, 10, 7158-7168.

7. G. Li, X. Lou, C. Peng, C. Liu, W. Chen*. Interface chemistry for sodium metal anodes/batteries: a review.Chem Synth., 2022, 2, 16.

8. J. Shi, L. Ding, Y. Wan, L. Mi,W. Chen*et al. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive.J. Energy Chem., 2021, 57, 650-655.

9. L. Zhang, X. Li, M. Yang, W. Chen*. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective.Energy Storage Materials, 2021,41, 522-545.

10. Zhang, J. Gai, K. Song, W. Chen*. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.Cell Reports Physical Science. 2022, 3, 100868

11. J. Zheng*, Y. Sun, W. Li,W. Chen* et al. Effects ofcomonomers on theperformance ofstablephosphonate-basedgelterpolymerelectrolytes forsodium-ionbatteries withultralongcyclingstability. ACS Appl. Mater. Interfaces., 2021, 13, 25024-25035.

12. S. Zhou, J. Lan, K. Song, Z. Zhang, J. Shi,W. Chen*. SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage. FlatChem., 2021,28, 100259.

13. L. Chen, K. Song, J. Shi,W. Chen*, et al.PAANa polymer induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance.Sci China Mater., 2021, 64, 105-114.

14. J. Zhang, K. Song, L. Mi, C. Liu,W. Chen* et al.Bimetal synergistic effect induced high reversibility of conversion type Ni@NiCo2S4 as a free-standing anode for sodium ion batteries.J. Phys. Chem., Lett., 2020, 11, 1435-1442.

15. G. Yao, X. Zhang, Y. Yan,W. Chen*et al.Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries.J. Energy Chem.,2020, 50, 387-394.

16. L. Mi,K. Song,K. Yang, W. Chen*et al.Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C., 2019, 123, 2775-2782.

17. L. Zhang, G. Feng, X. Li, W.Chen* et al. Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries.J. Membr. Sci., 2019, 577, 137-144.

18. K. Song, C. Liu, L. Mi,W. Chen* et al.Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries.Small,2019, 1903194.

19. W Chen*, L. Zhang, C. Liu, X. Fenget al.Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups.ACS Appl. Mater. Interfaces.,2018, 10, 28, 23883-23890.

20. Y.DongY. MaD. LiW. Chen* et al. Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability.Chem. Sci.,2018, 9, 8682.

21. Z. Li, X. Feng*, L. MiW. Chen* et al.Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium-ion batteries.Nano Research, 2018, 11, 4038-4048.

22. W. Chen*, L. Zhang, C. Liu, X. Feng,et al. Electrospunflexiblecelluloseacetate-basedseparators forsodium-ionbatteries withultralongcyclestability andexcellentwettability:therole ofinterfacechemicalgroups. ACS Appl. Mater. Interfaces.,2018, 10, 28, 23883-23890. 

23. L. Zhang, G. Feng, X. Li,W Chen*et al.Polypropylene/hydrophobic -silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J. Power Sources.,2018, 376,177-183.