简历:
李纲,教授、博士生导师、硕士生导师。
教育部新世纪优秀人才、河南省优秀教师、宝钢教育优秀教师奖、河南省高等学校中青年骨干教师、河南省教育厅学术技术带头人。多次获河南省优秀硕士论文指导教师称号(2011、2012、2013、2019及2020年)以及2016-2020年郑州大学优秀研究生导师称号。指导的博、硕士生10人次获得国家奖学金。
联系方式:
gangli@zzu.edu.cn
学习经历:
郑州大学本科学习获理学学士学位(198809-199207)
郑州大学硕士研究生学习获理学硕士学位(199309-199607)
山西大学博士研究生学习获理学博士学位(200009-200307)
工作经历:
郑州大学化学学院 (199607-现在)
University of Sussex (英国)化学系 博士后 (200409-200509)
香港中文大学化学系访问学者 (200401-200407)
研究方向:
设计、制备具有特定结构的晶态固体材料(如MOFs、HOFs以及COFs等),揭示其在质子传导、传感、能源等领域的应用价值。
主持项目:
1.国家自然科学基金面上项目 (起止:202101-202412;编号:22071223)
2.国家自然科学基金面上项目 (起止:201601-201912;编号:21571156)
3.国家自然科学基金面上项目 (起止:201001-201312;编号:21071127)
4.国家自然科学基金主任基金 (起止:201401-201412;编号:21341002)
5.国家自然科学基金青年项目 (起止:200601-200812;编号:20501017)
6.教育部新世纪人才支持计划 (起止:201001-201312;编号:NCET-10-0139)
7.教育部重点科研项目 (起止:200701-200912;编号:207067)
8.教育部留学归国基金 (起止:200601-200812)
代表论文(逆年序排列、均为通讯作者):
1. Recent advances in MOFs-based proton exchange membranes.Coordin. Chem. Rev.,2022, 471, 214740.
2. Proton conductive metal–organic frameworks based on main-group metals.Coordin. Chem. Rev.,2022, 452, 214301.
3. Metal@COFs possess high proton conductivity with mixed conducting mechanisms.ACS Appl. Mater. Interfaces,2022, 14, 15687-15696.
4. Proton conductive lanthanide-based metal-organic frameworks: synthesis strategies, structural features and recent progress.Topics Curr. Chem.,2022, 380, 9.
5. High protonic conductivity of three highly stable nanoscale hafnium(IV) metal-organic frameworks and their imidazole-loaded products.Inorg. Chem.,2022, 61, 4938-4947.
6. Comparative studies on the proton conductivities of hafnium-based metal-organic frameworks and related chitosan or Nafion composite membranes.Inorg. Chem.,2022, 61, 9564-9579.
7. Proton conductive N-heterocyclic metal–organic frameworks.Coordin. Chem. Rev.,2021, 432, 213754.
8. Proton conductive metal sulfonate frameworks.Coordin. Chem. Rev.,2021, 431, 213747.
9. Bi(III) MOFs: Syntheses, structures and applications.Inorg. Chem. Front., 2021, 8, 572-589.
10. High and tunable proton conduction in six 3D substituted imidazole dicarboxylate-based lanthanide-organic frameworks.Inorg. Chem.,2021, 60, 10808−10818.
11. High proton conduction in three highly water-stable hydrogen-bonded ferrocene-based phenyl carboxylate frameworks.Inorg. Chem.,2021, 60, 19278-19286.
12. Proton conductive covalent organic frameworks.Coordin. Chem. Rev.,2020, 422, 213465.
13. Proton conductive carboxylate-based metal-organic frameworks.Coordin. Chem. Rev.,2020, 403, 213100.
14. Proton conductive Zr-MOFs.Inorg. Chem. Front.,2020, 7, 3765-3784.
15. Structural effect on proton conduction in two highly stable disubstituted ferrocenyl carboxylate frameworks.Inorg. Chem.,2020, 59, 10243–10252.
16. Ultrahigh proton conduction in two highly stable ferrocenyl carboxylate frameworks.ACS Appl. Mater. Interfaces,2019, 11, 31018−31027.
17. A highly proton conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing.ACS Appl. Mater. Interfaces,2019, 11, 1713-1722.
18. Impressive proton conductivities of two highly stable metal-organic frameworks constructed by substituted imidazole dicarboxylates.Inorg. Chem.,2019, 58, 5173−5182.
19. Two highly stable proton conductive cobalt(II)-organic frameworks as impedance sensors for formic acid.Chem. - Eur. J.,2019, 25, 14108 – 14116.
20. A highly stable two-dimensional copper(II)-organic framework for proton conduction and ammonia impedance sensing.Chem. - Eur. J.,2018, 24, 10829– 10839.
21. A water-stable proton conductive barium(II)-organic framework for ammonia sensing at high humidity.Inorg. Chem.,2018, 57, 7104-7112.
22. A comparative investigation on proton conductivities for two metal-organic frameworks under water and aqua-ammonia vapors. Inorg. Chem.,2018, 57, 1474–1482.
23. Enhancing proton conductivity of a 3D metal−organic framework by attaching guest NH3molecules.Inorg. Chem.,2018, 57, 11560−11568.
24. Effective approach to promoting the proton conductivity of metal−organic frameworks by exposure to aqua−ammonia vapor.ACS Appl. Mater. Interfaces,2017, 9, 25082–25086.